Sciweavers

IAW
2003
IEEE

An Evolutionary Approach to Generate Fuzzy Anomaly Signatures

14 years 5 months ago
An Evolutionary Approach to Generate Fuzzy Anomaly Signatures
Abstract— This paper describes the generation of fuzzy signatures to detect some cyber attacks. This approach is an enhancement to our previous work, which was based on the principle of negative selection for generating anomaly detectors using genetic algorithms. The present work includes a different genetic representation scheme for evolving efficient fuzzy detectors. To determine the performance of the proposed approach, which is named Evolving Fuzzy Rules Detectors (EFR), experiments were conducted with three different data sets. One data set contains wireless data, generated using network simulator (NS2) while the other two data sets are publicly available. Results exhibited that our approach outperformed the previous techniques.
Fabio A. González, Jonatan Gómez, Ma
Added 04 Jul 2010
Updated 04 Jul 2010
Type Conference
Year 2003
Where IAW
Authors Fabio A. González, Jonatan Gómez, Madhavi Kaniganti, Dipankar Dasgupta
Comments (0)