This paper presents a novel solution to the illuminant estimation problem: the problem of how, given an image of a scene taken under an unknown illuminant, we can recover an estimate of that light. The work is founded on previous gamut mapping solutions to the problem which solve for a scene illuminant by determining the set of diagonal mappings which take image data captured under an unknown light to a gamut of reference colours taken under a known light. Unfortunately a diagonal model is not always a valid model of illumination change and so previous approaches sometimes return a null solution. In addition, previous methods are difficult to implement. We address these problems by recasting the problem as one of illuminant classification: we define a priori a set of plausible lights thus ensuring that a scene illuminant estimate will always be found. A plausible light is represented by the gamut of colours observable under it and the illuminant in an image is classified by determ...
Graham D. Finlayson, Steven D. Hordley, Ingeborg T