Sciweavers

ICDM
2003
IEEE

Unsupervised Link Discovery in Multi-relational Data via Rarity Analysis

14 years 5 months ago
Unsupervised Link Discovery in Multi-relational Data via Rarity Analysis
A significant portion of knowledge discovery and data mining research focuses on finding patterns of interest in data. Once a pattern is found, it can be used to recognize satisfying instances. The new area of link discovery requires a complementary approach, since patterns of interest might not yet be known or might have too few examples to be learnable. This paper presents an unsupervised link discovery method aimed at discovering unusual, interestingly linked entities in multi-relational datasets. Various notions of rarity are introduced to measure the "interestingness" of sets of paths and entities. These measurements have been implemented and applied to a real-world bibliographic dataset where they give very promising results.
Shou-de Lin, Hans Chalupsky
Added 04 Jul 2010
Updated 04 Jul 2010
Type Conference
Year 2003
Where ICDM
Authors Shou-de Lin, Hans Chalupsky
Comments (0)