This paper describes a novel methodology for implementing video search functions such as retrieval of near-duplicate videos and recognition of actions in surveillance video. Videos are divided into half-second clips whose stacked frames produce 3D space-time volumes of pixels. Pixel regions with consistent color and motion properties are extracted from these 3D volumes by a threshold-free hierarchical space-time segmentation technique. Each region is then described by a high-dimensional point whose components represent the position, motion and, when possible, color of the region. In the indexing phase for a video database, these points are assigned labels that specify their video clip of origin. All the labeled points for all the clips are stored into a single binary tree for efficient k-nearest neighbor retrieval. The retrieval phase uses video segments as queries. Half-second clips of these queries are again segmented to produce sets of points, and for each point the labels of its n...
Daniel DeMenthon, David S. Doermann