We consider a two-tiered Wireless Sensor Network (WSN) consisting of sensor clusters deployed around strategic locations and base-stations (BSs) whose locations are relatively flexible. Within a sensor cluster, there are many small sensor nodes (SNs) that capture, encode and transmit relevant information from the designated area, and there is at least one application node (AN) that receives raw data from these SNs, creates a comprehensive local-view, and forwards the composite bit-stream toward a BS. In practice, both SN and AN are battery-powered and energy-constrained, and their node lifetimes directly affect the network lifetime of WSNs. In this paper, we focus on the topology control process for ANs and BSs, which constitute the upper tier of a two-tiered WSN. We propose approaches to maximize the topological network lifetime of the WSN, by arranging BS location and inter-AN relaying optimally. Based on an algorithm in Computational Geometry, we derive the optimal BS locations un...