Sciweavers

SC
2003
ACM

Parallel Multilevel Sparse Approximate Inverse Preconditioners in Large Sparse Matrix Computations

14 years 4 months ago
Parallel Multilevel Sparse Approximate Inverse Preconditioners in Large Sparse Matrix Computations
We investigate the use of the multistep successive preconditioning strategies (MSP) to construct a class of parallel multilevel sparse approximate inverse (SAI) preconditioners. We do not use independent set ordering, but a diagonal dominance based matrix permutation to build a multilevel structure. The purpose of introducing multilevel structure into SAI is to enhance the robustness of SAI for solving difficult problems. Forward and backward preconditioning iteration and two Schur complement preconditioning strategies are proposed to improve the performance and to reduce the storage cost of the multilevel preconditioners. One version of the parallel multilevel SAI preconditioner based on the MSP strategy is implemented. Numerical experiments for solving a few sparse matrices on a distributed memory parallel computer are reported. General Terms Sparse matrix Keywords Parallel preconditioning, sparse approximate inverse, multilevel preconditioning
Kai Wang, Jun Zhang, Chi Shen
Added 05 Jul 2010
Updated 05 Jul 2010
Type Conference
Year 2003
Where SC
Authors Kai Wang, Jun Zhang, Chi Shen
Comments (0)