Abstract. We define a translation of aggregate programs to normal logic programs which preserves the set of partial stable models. We then define the classes of definite and stratified aggregate programs and show that the translation of such programs are, respectively, definite and stratified logic programs. Consequently these two classes of programs have a single partial stable model which is twovalued and is also the well-founded model. Our definition of stratification is more general than the existing one and covers a strictly larger class of programs.