Abstract. Multi-adjoint logic programs were recently proposed as a generalization of monotonic and residuated logic programs, in that simultaneous use of several implications in the rules and rather general connectives in the bodies are allowed. In this work, the need of biresiduated pairs is justified through the study of a very intuitive family of operators, which turn out to be not necessarily commutative and associative and, thus, might have two different residuated implications; finally, we introduce the framework of biresiduated multi-adjoint logic programming and sketch some considerations on its fixpoint semantics.