Sciweavers

CAISE
2003
Springer

Distributed Data Clustering

14 years 4 months ago
Distributed Data Clustering
Abstract. To make effective use of distributed information, it is desirable to allow coordination and collaboration among various information sources. This paper deals with clustering data emanating from different sites. The process of clustering consists of three steps: find the (local) clusters of data at each site; find (higher) clusters from the union of the distributed data sets at the central site; and finally compute the associations between the two sets of clusters. The approach aims at discovering the hidden structure of a multi-source data and assigning unseen data points coming from a site to the right higher cluster without any need to access their feature values. The proposed approach is evaluated experimentally.
Abdelhamid Bouchachia
Added 06 Jul 2010
Updated 06 Jul 2010
Type Conference
Year 2003
Where CAISE
Authors Abdelhamid Bouchachia
Comments (0)