Realistic haptic interaction in volume sculpting is a decisive prerequisite for successful simulation of bone surgery. We present a haptic rendering algorithm, based on a multi-point collision detection approach which provides realistic tool interactions. Both haptics and graphics are rendered at sub-voxel resolution, which leads to a high level of detail and enables the exploration of the models at any scale. With a simulated drill bony structures can be removed interactively. The characteristics of the real drilling procedure like material distribution around the drill are considered to enable a realistic sensation. All forces are calculated at an extra high update rate of 6000 Hz which enables rendering of drilling vibrations and stiff surfaces. As a main application, a simulator for petrous bone surgery was developed. With the simulated drill, access paths to the middle ear can be studied. This allows a realistic training without the need for cadaveric material.