Sciweavers

ICIP
2002
IEEE

DPF - a perceptual distance function for image retrieval

15 years 1 months ago
DPF - a perceptual distance function for image retrieval
For almost a decade, Content-Based Image Retrieval has been an active research area, yet one fundamental problem remains largely unsolved: how to measure perceptual similarity. To measure perceptual similarity, most researchers employ the Minkowski-type metric. Our extensive data-mining experiments on visual data show that, unfortunately, the Minkowski metric is not very effective in modeling perceptual similarity. Our experiments also show that the traditional "static" feature weighting approaches are not sufficient for retrieving various similar images. In this paper, we report our discovery of a perceptual distance function through mining a large set of visual data. We call the discovered function dynamic partial distance function (DPF). When we empirically compare DPF to Minkowskitype distance functions, DPF performs significantly better in finding similar images. The effectiveness of DPF can be well explained by similarity theories in cognitive psychology.
Baitao Li Chang, E. Ching-Tung Wu
Added 24 Oct 2009
Updated 24 Oct 2009
Type Conference
Year 2002
Where ICIP
Authors Baitao Li Chang, E. Ching-Tung Wu
Comments (0)