Sciweavers

PODS
2010
ACM

Optimizing linear counting queries under differential privacy

14 years 5 months ago
Optimizing linear counting queries under differential privacy
Differential privacy is a robust privacy standard that has been successfully applied to a range of data analysis tasks. But despite much recent work, optimal strategies for answering a collection of related queries are not known. We propose the matrix mechanism, a new algorithm for answering a workload of predicate counting queries. Given a workload, the mechanism requests answers to a different set of queries, called a query strategy, which are answered using the standard Laplace mechanism. Noisy answers to the workload queries are then derived from the noisy answers to the strategy queries. This two stage process can result in a more complex correlated noise distribution that preserves differential privacy but increases accuracy. We provide a formal analysis of the error of query answers produced by the mechanism and investigate the problem of computing the optimal query strategy in support of a given workload. We show this problem can be formulated as a rank-constrained semideï¬...
Chao Li, Michael Hay, Vibhor Rastogi, Gerome Mikla
Added 10 Jul 2010
Updated 10 Jul 2010
Type Conference
Year 2010
Where PODS
Authors Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, Andrew McGregor
Comments (0)