When a software system critical for an organization exhibits a problem during its operation, it is relevant to fix it in a short period of time, to avoid serious economical losses. The problem is therefore noticed to the organization having in charge the maintenance, and it should be correctly and quickly dispatched to the right maintenance team. We propose to automatically classify incoming maintenance requests (also said tickets), routing them to specialized maintenance teams. The final goal is to develop a router, working around the clock, that, without human intervention, dispatches incoming tickets with the lowest misclassification error, measured with respect to a given routing policy. 6000 maintenance tickets from a large, multi-site, software system, spanning about two years of system in-field operation, were used to compare and assess the accuracy of different classification approaches (i.e., Vector Space model, Bayesian model, support vectors, classification trees and ...
Giuseppe A. Di Lucca, Massimiliano Di Penta, Sara