Resource management constitutes an important infrastructural component of a computational grid environment. The aim of grid resource management is to efficiently schedule applications over the available resources provided by the supporting grid architecture. Such goals within the high performance community rely, in part, on accurate performance prediction capabilities. This paper introduces a resource management infrastructure for grid computing environments. The technique couples application performance prediction with a hierarchical multi-agent system. An initial system implementation utilises the performance prediction capabilities of the PACE toolkit to provide quantitative data regarding the performance of complex applications running on local grid resources. The validation results show that a high level of accuracy can be obtained, that cross-platform comparisons can be easily undertaken, and that the estimates can be evaluated rapidly. A hierarchy of homogeneous agents are used...
Junwei Cao, Stephen A. Jarvis, Daniel P. Spooner,