Sciweavers

SSDBM
2002
IEEE

Similarity Searching for Multi-Attribute Sequences

14 years 5 months ago
Similarity Searching for Multi-Attribute Sequences
We investigate the problem of searching similar multiattribute time sequences. Such sequences arise naturally in a number of medical, financial, video, weather forecast, and stock market databases where more than one attribute is of interest at a time instant. We first solve the simple case in which the distance is defined as the Euclidean distance. Later, we extend it to shift and scale invariance. We formulate a new symmetric scale and shift invariant notion of distance for such sequences. We also propose a new index structure that transforms the data sequences and clusters them according to their shiftings and scalings. This clustering improves the efficiency considerably. According to our experiments with real and synthetic datasets, the index structure's performance is 5 to 45 times better than competing techniques, the exact speedup based on other optimizations such as caching and replication.
Tamer Kahveci, Ambuj K. Singh, Aliekber Gürel
Added 16 Jul 2010
Updated 16 Jul 2010
Type Conference
Year 2002
Where SSDBM
Authors Tamer Kahveci, Ambuj K. Singh, Aliekber Gürel
Comments (0)