In adaptive query processing, the way in which a query is evaluated is changed in the light of feedback obtained from the environment during query evaluation. Such feedback may, for example, establish that misleading selectivity estimates were used when the query was compiled, leading to the optimizer choosing an inappropriate join order or unsuitable join algorithms. This paper describes how joins can be reordered, and the join algorithms used replaced, while they are being evaluated in pipelined plans. Where joins are reordered and/or replaced during their evaluation, the approach avoids duplicating work that has already been carried out, by resuming from where the previous plan left off. The approach has been evaluated empirically, and shown to be effective for improving query performance in the light of misleading selectivity estimates. Categories and Subject Descriptors H.2.4 [Database Management]: Systems—Query processing General Terms Algorithms, Experimentation, Performanc...
Kwanchai Eurviriyanukul, Norman W. Paton, Alvaro A