Abstract. In previous work we have shown that the MapReduce framework for distributed computation can be deployed for highly scalable inference over RDF graphs under the RDF Schema semantics. Unfortunately, several key optimizations that enabled the scalable RDFS inference do not generalize to the richer OWL semantics. In this paper we analyze these problems, and we propose solutions to overcome them. Our solutions allow distributed computation of the closure of an RDF graph under the OWL Horst semantics. We demonstrate the WebPIE inference engine, built on top of the Hadoop platform and deployed on a compute cluster of 64 machines. We have evaluated our approach using some real-world datasets (UniProt and