Evolutionary methods have been used to repair programs automatically, with promising results. However, the fitness function used to achieve these results was based on a few simple test cases and is likely too simplistic for larger programs and more complex bugs. We focus here on two aspects of fitness evaluation: efficiency and precision. Efficiency is an issue because many programs have hundreds of test cases, and it is costly to run each test on every individual in the population. Moreover, the precision of fitness functions based on test cases is limited by the fact that a program either passes a test case, or does not, which leads to a fitness function that can take on only a few distinct values. This paper investigates two approaches to enhancing fitness functions for program repair, incorporating (1) test suite selection to improve efficiency and (2) formal specifications to improve precision. We evaluate test suite selection on 10 programs, improving running time for auto...