Sciweavers

COMPGEOM
2009
ACM

k-means requires exponentially many iterations even in the plane

14 years 5 months ago
k-means requires exponentially many iterations even in the plane
The k-means algorithm is a well-known method for partitioning n points that lie in the d-dimensional space into k clusters. Its main features are simplicity and speed in practice. Theoretically, however, the best known upper bound on its running time (i.e. O(nkd )) is, in general, exponential in the number of points (when kd = Ω(n/ log n)). Recently, Arthur and Vassilvitskii [2] showed a super-polynomial worstcase analysis, improving the best known lower bound from Ω(n) to 2Ω( √ n) with a construction in d = Ω( √ n) dimensions. In [2] they also conjectured the existence of superpolynomial lower bounds for any d ≥ 2. Our contribution is twofold: we prove this conjecture and we improve the lower bound, by presenting a simple construction in the plane that leads to the exponential lower bound 2Ω(n) . Categories and Subject Descriptors F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations General...
Andrea Vattani
Added 22 Jul 2010
Updated 22 Jul 2010
Type Conference
Year 2009
Where COMPGEOM
Authors Andrea Vattani
Comments (0)