Sciweavers

RECSYS
2009
ACM

Effective diverse and obfuscated attacks on model-based recommender systems

14 years 5 months ago
Effective diverse and obfuscated attacks on model-based recommender systems
Robustness analysis research has shown that conventional memory-based recommender systems are very susceptible to malicious profile-injection attacks. A number of attack models have been proposed and studied and recent work has suggested that model-based collaborative filtering (CF) algorithms have greater robustness against these attacks. Moreover, to combat such attacks, several attack detection algorithms have been proposed. One that has shown high detection accuracy is based on using principal component analysis (PCA) to cluster attack profiles on the basis that such profiles are highly correlated. In this paper, we argue that the robustness observed in model-based algorithms is due to the fact that the proposed attacks have not targeted the specific vulnerabilities of these algorithms. We discuss how an effective attack targeting model-based algorithms that employ profile clustering can be designed. It transpires that the attack profiles employed in this attack, exhibit l...
Zunping Cheng, Neil Hurley
Added 23 Jul 2010
Updated 23 Jul 2010
Type Conference
Year 2009
Where RECSYS
Authors Zunping Cheng, Neil Hurley
Comments (0)