Abstract. New algorithms are described and analysed for solving various problems associated with a large integer matrix: computing the Hermite form, computing a kernel basis, and solving a system of linear diophantine equations. The algorithms are space-efficient and for certain types of input matrices — for example, those arising during the computation of class groups and regulators — are faster than previous methods. Experiments with a prototype implementation support the running time analyses.
Mark Giesbrecht, Michael J. Jacobson Jr., Arne Sto