The success of personal information agents depends on their ability to provide task-relevant information. This paper presents WordSieve, a new algorithm that generates context descriptions to guide document indexing and retrieval. WordSieve exploits information about the sequence of accessed documents to identify words which indicate a shift in context. We have tested WordSieve in a personal information agent, Calvin, which monitors a user’s document access, generates a representation of the user’s task context, indexes the resources consulted, and presents recommendations for other resources that were consulted in similar prior contexts. In initial experiments, WordSieve outperforms term frequency/inverse document frequency at matching documents to hand-coded vector representations of the task contexts in which they were originally consulted, where the task context representations are term vectors representing a specific search task given to the user.
Travis Bauer, David B. Leake