Sciweavers

ECML
2001
Springer

Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL

14 years 4 months ago
Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL
Abstract. This paper presents a simple unsupervised learning algorithm for recognizing synonyms, based on statistical data acquired by querying a Web search engine. The algorithm, called PMI-IR, uses Pointwise Mutual Information (PMI) and Information Retrieval (IR) to measure the similarity of pairs of words. PMI-IR is empirically evaluated using 80 synonym test questions from the Test of English as a Foreign Language (TOEFL) and 50 synonym test questions from a collection of tests for students of English as a Second Language (ESL). On both tests, the algorithm obtains a score of 74%. PMI-IR is contrasted with Latent Semantic Analysis (LSA), which achieves a score of 64% on the same 80 TOEFL questions. The paper discusses potential applications of the new unsupervised learning algorithm and some implications of the results for LSA and LSI (Latent Semantic Indexing).
Peter D. Turney
Added 28 Jul 2010
Updated 28 Jul 2010
Type Conference
Year 2001
Where ECML
Authors Peter D. Turney
Comments (0)