Bent functions have maximal minimum distance to the set of affine functions. In other words, they achieve the maximal minimum distance to all the coordinate functions of affine monomials. In this paper we introduce a new class of bent functions which we call hyper-bent functions. Functions within this class achieve the maximal minimum distance to all the coordinate functions of all bijective monomials. We provide an explicit construction for such functions. We also extend our results to vectorial hyper-bent functions. Key words. Boolean functions, bent functions, hyper-bent functions, nonlinearity.
Amr M. Youssef, Guang Gong