The routing architecture of an FPGA consists of the length of the wires, the type of switch used to connect wires (buffered, unbuffered, fast or slow) and the topology of the interconnection of the switches and wires. FPGA Routing architecture has a major influence on the logic density and speed of FPGA devices. Previous work [1] based on a 0.35um CMOS process has suggested that an architecture consisting of length 4 wires (where the length of a wire is measured in terms of the number of logic blocks it passes before being switched) and half of the programmable switches are active buffers, and half are pass transistors. In that work, however, the topology of the routing architecture prevented buffered tracks from connecting to pass-transistor tracks. This restriction prevents the creation of interconnection trees for high fanout nets that have a mixture of buffers and pass transistors. Electrical simulations suggest that connections closer to the leaves on interconnection trees are f...