We consider the problem of enumerating all minimal integer solutions of a monotone system of linear inequalities. We first show that for any monotone system of r linear inequalities in n variables, the number of maximal infeasible integer vectors is at most rn times the number of minimal integer solutions to the system. This bound is accurate up to a polylog(r) factor and leads to a polynomial-time reduction of the enumeration problem to a natural generalization of the well-known dualization problem for hypergraphs, in which dual pairs of hypergraphs are replaced by dual collections of integer vectors in a box. We provide a quasi-polynomial algorithm for the latter dualization problem. These results imply, in particular, that the problem of incrementally generating minimal integer solutions of a monotone system of linear inequalities can be done in quasi-polynomial time. Key words: Integer programming, complexity of incremental algorithms, dualization, quasi-polynomial time, monotone ...
Endre Boros, Khaled M. Elbassioni, Vladimir Gurvic