In this paper we introduce a constrained Level Building Algorithm (LBA) in order to reduce the search space of a Large Vocabulary Handwritten Word Recognition (LVHWR) system. A time and a length constraint are introduced to limit the number of frames and the number of levels of the LBA respectively. A regression model that fits the response variables, namely, accuracy and speed, to a non–linear function of the constraints is proposed and a statistical experimental design technique is employed to analyse the effects of the two constraints on the responses. Experimental results prove that the inclusion of these constraints improve the recognition speed of the LVHWR system without changing the recognition rate significantly.
Alessandro L. Koerich, Robert Sabourin, Ching Y. S