We usually use natural language vocabulary for sort names in order-sorted logics, and some sort names may contradict other sort names in the sort-hierarchy. These implicit negations, called lexical negations in linguistics, are not explicitly prefixed by the negation connective. In this paper, we propose the notions of structured sorts, sort relations, and the contradiction in the sort-hierarchy. These notions specify the properties of these implicit negations and the classical negation, and thus, we can declare the exclusivity and the totality between two sorts, one of which is affirmative while the other is negative. We regard the negative affix as a strong negation operator, and the negative lexicon as an antonymous sort that is exclusive to its counterpart in the hierarchy. In order to infer from these negations, we integrate a structured sort constraint system into a clausal inference system.