This paper addresses the problem of finding the K closest pairs between two spatial data sets, where each set is stored in a structure belonging in the R-tree family. Five different algorithms (four recursive and one iterative) are presented for solving this problem. The case of 1 closest pair is treated as a special case. An extensive study, based on experiments performed with synthetic as well as with real point data sets, is presented. A wide range of values for the basic parameters affecting the performance of the algorithms, especially the effect of overlap between the two data sets, is explored. Moreover, an algorithmic as well as an experimental comparison with existing incremental algorithms addressing the same problem is presented. In most settings, the new algorithms proposed clearly outperform the existing ones.