Abstract. Recent research has provided methods for coordinating the individually formed concurrent hierarchical plans (CHiPs) of a group of agents in a shared environment. A reasonable criticism of this technique is that the summary information can grow exponentially as it is propagated up a plan hierarchy. This paper analyzes the complexity of the coordination problem to show that in spite of this exponential growth, coordinating CHiPs at higher levels is still exponentially cheaper than at lower levels. In addition, this paper offers heuristics, including “fewest threats first” (FTF) and “expand most threats first” (EMTF), that take advantage of summary information to smartly direct the search for a global plan. Experiments show that for a particular domain these heuristics greatly improve the search for the optimal global plan compared to a “fewest alternatives first” (FAF) heuristic that has been successful in Hierarchical Task Network (HTN) Planning.
Bradley J. Clement, Edmund H. Durfee