Sciweavers

ECCV
2010
Springer

Kernel Sparse Representation for Image Classification and Face Recognition

14 years 5 months ago
Kernel Sparse Representation for Image Classification and Face Recognition
Recent research has shown the effectiveness of using sparse coding(Sc) to solve many computer vision problems. Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which may reduce the feature quantization error and boost the sparse coding performance, we propose Kernel Sparse Representation(KSR). KSR is essentially the sparse coding technique in a high dimensional feature space mapped by implicit mapping function. We apply KSR to both image classification and face recognition. By incorporating KSR into Spatial Pyramid Matching(SPM), we propose KSRSPM for image classification. KSRSPM can further reduce the information loss in feature quantization step compared with Spatial Pyramid Matching using Sparse Coding(ScSPM). KSRSPM can be both regarded as the generalization of Efficient Match Kernel(EMK) and an extension of ScSPM. Compared with sparse coding, KSR can learn more discriminative sparse codes for face recognition. Extensive experimental results...
Added 02 Aug 2010
Updated 02 Aug 2010
Type Conference
Year 2010
Where ECCV
Comments (0)