We investigate the all-or-nothing encryption paradigm which was introduced by Rivest as a new mode of operation for block ciphers. The paradigm involves composing an all-or-nothing transform (AONT) with an ordinary encryption mode. The goal is to have secure encryption modes with the additional property that exhaustive key-search attacks on them are slowed down by a factor equal to the number of blocks in the ciphertext. We give a new notion concerned with the privacy of keys that provably captures this key-search resistance property. We suggest a new characterization of AONTs and establish that the resulting all-or-nothing encryption paradigm yields secure encryption modes that also meet this notion of key privacy. A consequence of our new characterization is that we get more efficient ways of instantiating the all-or-nothing encryption paradigm. We describe a simple block-cipher-based AONT and prove it secure in the Shannon Model of a block cipher. We also give attacks against altern...