Secure Function Evaluation (SFE) protocols are very hard to design, and reducibility has been recognized as a highly desirable property of SFE protocols. Informally speaking, reducibility (sometimes called modular composition) is the automatic ability to break up the design of complex SFE protocols into several simpler, individually secure components. Despite much effort, only the most basic type of reducibility, sequential reducibility (where only a single sub-protocol can be run at a time), has been considered and proven to hold for a specific class of SFE protocols. Unfortunately, sequential reducibility does not allow one to save on the number of rounds (often the most expensive resource in a distributed setting), and achieving more general notions is not easy (indeed, certain SFE notions provably enjoy sequential reducibility, but fail to enjoy more general ones). In this paper, for information-theoretic SFE protocols, we • Formalize the notion of parallel reducibility, where ...