This paper proposes new algorithms for the Binate Covering Problem (BCP), a well-known restriction of Boolean Optimization. Binate Covering finds application in many areas of Computer Science and Engineering. In Artificial Intelligence, BCP can be used for computing minimum-size prime implicants of Boolean functions, of interest in Automated Reasoning and Non-Monotonic Reasoning. Moreover, Binate Covering is an essential modeling tool in Electronic Design Automation. The objectives of the paper are to briefly review branchand-bound algorithms for BCP, to describe how to apply backtrack search pruning techniques from the Boolean Satisfiability (SAT) domain to BCP, and to illustrate how to strengthen those pruning techniques by exploiting the actual formulation of BCP. Experimental results, obtained on representative instances indicate that the proposed techniques provide significant performance gains for different classes of instances.
Vasco M. Manquinho, João P. Marques Silva