Matrix multiplication is an important kernel in linear algebra algorithms, and the performance of both serial and parallel implementations is highly dependent on the memory system behavior. Unfortunately, due to false sharing and cache conflicts, traditional column-major or row-major array layouts incur high variability in memory system performance as matrix size varies. This paper investigates the use of recursive array layouts for improving the performance of parallel recursive matrix multiplication algorithms. We extend previous work by Frens and Wise on recursive matrix multiplication to examine several recursive array layouts and three recursive algorithms: standard matrix multiplication, and the more complex algorithms of Strassen and Winograd. We show that while recursive array layouts significantly outperform tradi
Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K.