In this paper, we present ParaPART, a parallel version of a mesh partitioning tool, called PART, for distributed systems. PART takes into consideration the heterogeneities in processor performance, network performance and application computational complexities to achieve a balanced estimate of execution time across the processors in the distributed system. Simulated annealing is used in PART to perform the backtracking search for desired partitions. ParaPART signi cantly improves performance of PART by using the asynchronous multiple Markov chain approach of parallel simulated annealing. ParaPART is used to partition six irregular meshes into 8, 16, and 100 subdomains using up to 64 client processors on an IBM SP2 machine. The results show superlinear speedup in most cases and nearly perfect speedup for the rest. Using the partitions from ParaPART, we ran an explicit, 2-D nite element code on two geographically distributed IBM SP machines. Results indicate that ParaPART produces result...
Jian Chen, Valerie E. Taylor