Sciweavers

EUROGP
1999
Springer

Adapting the Fitness Function in GP for Data Mining

14 years 5 months ago
Adapting the Fitness Function in GP for Data Mining
In this paper we describe how the Stepwise Adaptation of Weights (saw) technique can be applied in genetic programming. The saw-ing mechanism has been originally developed for and successfully used in eas for constraint satisfaction problems. Here we identify the very basic underlying ideas behind saw-ing and point out how it can be used for different types of problems. In particular, saw-ing is wellsuited for data mining tasks where the fitness of a candidate solution is composed by ‘local scores’ on data records. We evaluate the power of the saw-ing mechanism on a number of benchmark classification data sets. The results indicate that extending the gp with the saw-ing feature increases its performance when different types of misclassifications are not weighted differently, but leads to worse results when they are.
Jeroen Eggermont, A. E. Eiben, Jano I. van Hemert
Added 04 Aug 2010
Updated 04 Aug 2010
Type Conference
Year 1999
Where EUROGP
Authors Jeroen Eggermont, A. E. Eiben, Jano I. van Hemert
Comments (0)