Sciweavers

ANSS
1998
IEEE

On Interval Weighted Three-Layer Neural Networks

14 years 4 months ago
On Interval Weighted Three-Layer Neural Networks
In solving application problems, the data sets used to train a neural network may not be hundred percent precise but within certain ranges. Representing data sets with intervals, we have interval neural networks. By analyzing the mathematical model, we categorize general three-layer neural network training problems into two types. One of them can be solved by finding numerical solutions of nonlinear systems of equations. The other can be transformed into nonlinear optimization problems. Reliable interval algorithms such as interval Newton/generalized bisection method and interval branchand-bound algorithm are applied to obtain optimal weights for interval neural networks. The applicable state-of-art interval software packages are reviewed in this paper as well.
Mohsen Beheshti, Ali Berrached, André de Ko
Added 04 Aug 2010
Updated 04 Aug 2010
Type Conference
Year 1998
Where ANSS
Authors Mohsen Beheshti, Ali Berrached, André de Korvin, Chenyi Hu, Ongard Sirisaengtaksin
Comments (0)