Abstract. Recent times have seen an explosive growth in the availability of various kinds of data. It has resulted in an unprecedented opportunity to develop automated data-driven techniques of extracting useful knowledge. Data mining, an important step in this process of knowledge discovery, consists of methods that discover interesting, non-trivial, and useful patterns hidden in the data [SAD+93, CHY96]. The field of data mining builds upon the ideas from diverse fields such as machine learning, pattern recognition, statistics, database systems, and data visualization. But, techniques developed in these traditional disciplines are often unsuitable due to some unique characteristics of today’s data-sets, such as their enormous sizes, high-dimensionality, and heterogeneity. There is a necessity to develop effective parallel algorithms for various data mining techniques. However, designing such algorithms is challenging, and the main focus of the paper is a description of the paral...