Sciweavers

ICCV
1998
IEEE

Hyperbolic "Smoothing" of Shapes

14 years 3 months ago
Hyperbolic "Smoothing" of Shapes
We have been developing a theory of generic 2-D shape based on a reaction-diffusion model from mathematical physics. The description of a shape is derived from the singularities of a curve evolution process driven by the reaction (hgperbolic) term. The diffusion (parabolic) term is related to smoothing and shape simplification. However, the unification of the two is problematic, because the slightest amount of diffusion dominates and prevents the formation of generic first-order shocks. The technical issue is whether it is possible to smooth a shape, in any sense, without destroying the shocks. We now repod a constructive solution to this problem, by embedding the smoothing term in a global metric against which a purely hyperbolic evolution is performed from the initid curve. This is a new flow for shape, that extends the advantages of the original one. Specific metrics a m developed, which lead to a natural hierarchy of shape features, analogous to the simplification one might percei...
Kaleem Siddiqi, Allen Tannenbaum, Steven W. Zucker
Added 04 Aug 2010
Updated 04 Aug 2010
Type Conference
Year 1998
Where ICCV
Authors Kaleem Siddiqi, Allen Tannenbaum, Steven W. Zucker
Comments (0)