Spatiotemporal applications, such as fleet management and air traffic control, involving continuously moving objects are increasingly at the focus of research efforts. The representation of the continuously changing positions of the objects is fundamentally important in these applications. This paper reports on on-going research in the representation of the positions of moving-point objects. More specifically, object positions are sampled using the Global Positioning System, and interpolation is applied to determine positions in-between the samples. Special attention is given in the representation to the quantification of the position uncertainty introduced by the sampling technique and the interpolation. In addition, the paper considers the use for query processing of the proposed representation in conjunction with indexing. It is demonstrated how queries involving uncertainty may be answered using the standard filter-and-refine approach known from spatial query processing.
Dieter Pfoser, Christian S. Jensen