Discovering sequential patterns is an important problem in data mining with a host of application domains including medicine, telecommunications, and the World Wide Web. Conventional mining systems provide users with only a very restricted mechanism (based on minimum support) for specifying patterns of interest. In this paper, we propose the use of Regular Expressions (REs) as a flexible constraint specification tool that enables user-controlled focus to be incorporated into the pattern mining process. We develop a family of novel algorithms (termed SPIRIT – Sequential Pattern mIning with Regular expressIon consTraints) for mining frequent sequential patterns that also satisfy user-specified RE constraints. The main distinguishing factor among the proposed schemes is the degree to which the RE constraints are enforced to prune the search space of patterns during computation. Our solutions provide valuable insights into the tradeoffs that arise when constraints that do not subscri...
Minos N. Garofalakis, Rajeev Rastogi, Kyuseok Shim