We propose a unifying method for analysis of scheduling problems in real-time systems. The method is based on ACSR-VP, a real-time process algebra with value-passing capabilities. We use ACSR-VP to describe an instance of a scheduling problem as a process that has parameters of the problem as free variables. The specification is analyzed by means of a symbolic algorithm. The outcome of the analysis is a set of equations, a solution to which yields the values of the parameters that make the system schedulable. Equations are solved using integer programming or constraint logic programming. The paper presents specifications of two scheduling problems as examples.