In this paper, we propose the Pyramid-Technique, a new indexing method for high-dimensional data spaces. The PyramidTechnique is highly adapted to range query processing using the maximum metric Lmax. In contrast to all other index structures, the performance of the Pyramid-Technique does not deteriorate when processing range queries on data of higher dimensionality. The Pyramid-Technique is based on a special partitioning strategy which is optimized for high-dimensional data. The basic idea is to divide the data space first into 2d pyramids sharing the center point of the space as a top. In a second step, the single pyramids are cut into slices parallel to the basis of the pyramid. These slices form the data pages. Furthermore, we show that this partition provides a mapping from the given d-dimensional space to a 1-dimensional space. Therefore, we are able to use a B+-tree to manage the transformed data. As an analytical evaluation of our technique for hypercube range queries and uni...