In this paper we focus on using local 3D structure for segmentation. A tensor descriptor is estimated for each neighbourhood, i.e. for each voxel in the data set. The tensors are created from a combination of the outputs form a set of 3D quadrature filters. The shape of the tensors describe locally the structure of the neighbourhood in terms of how much it is like a plane, a line, and a sphere. We apply this to segmentation of bone from Computer Tomography data (CT). Traditional methods are based purely on gray-level value discrimination and have difficulties in recovering thin bone structures due to so called partial voluming, a problem which is present in all such sampled data. We illuminate the partial voluming problem by showing that thresholding creates complicated artifacts even if the signal is densely enough sampled and can be perfectly reconstructed. The unwanted effects of thresholding can be reduced by a change of the signal basis. We show that by using additional local s...