This paper describes a powerful, scalable, reconfigurable computer called the PARTS engine. The PARTS engine consists of 16 Xilinx 4025 FPGAs, and 16 one-megabyte SRAMs. The FPGAs are connected in a partial torus— each associated with two adjacent SRAMs. The SRAMs are tightly coupled to the FPGAs so that all the SRAMs can be accessed concurrently. The PARTS engine fits on a standard PCI card in a personal computer or workstation. The first application implemented on the PARTS engine is a depth from stereo vision algorithm that computes 24 stereo disparities on 320 by 240 pixel images at 42 frames per second. Running at this speed, the engine is performing approximately 2.3 billion RISC-equivalent operations per second, accessing memory at a rate of 500 million bytes per second and attaining throughput of over 70 million point × disparity measurements per second.