This paper presents a method for automatic segmentation of the tibia and femur in clinical magnetic resonance images of knees. Texture information is incorporated into an active contours framework through the use of vector-valued geodesic snakes with local variance as a second value at each pixel, in addition to intensity. This additional information enables the system to better handle noise and the non-uniform intensities found within the structures to be segmented. It currently operates independently on 2D images (slices of a volumetric image) where the initial contour must be within the structure but not necessarily near the boundary. These separate segmentations are stacked to display the performance on the entire 3D structure.
Liana M. Lorigo, Olivier D. Faugeras, W. Eric L. G