We consider spatial databases that can be defined in terms of polynomial inequalities, and we are interested in monotonic transformations of spatial databases. We investigate a hierarchy of monotonicity classes of spatial transformations that is determined by the number of degrees of freedom of the transformations. The result of a monotonic transformation with k degrees of freedom on a spatial database is completely determined by its result on subsets of cardinality at most k of the spatial database. The result of a transformation in the largest class of the hierarchy on a spatial database is determined by its result on arbitrary large subsets of the database. The latter is the class of all the monotonic spatial transformations. We give a sound and complete language for the monotonic spatial transformations that can be expressed in the relational calculus augmented with polynomial inequalities and that belong to a class with a finite number of degrees of freedom. In particular, we sh...