The Processor Configuration Problem (PCP) is a Constraint Optimization Problem. The task is to link up a finite set of processors into a network, while minimizing the maximum distance between these processors. Since each processor has a limited number of communication channels, a carefully planned layout could minimize the overhead for message switching. In this paper, we present a Genetic Algorithm (GA) approach to the PCP. Our technique uses a mutation based GA, a function that produces schemata by analyzing previous solutions, and an effective data representation. Our approach has been shown to outperform other published techniques in this problem.
T. L. Lau, Edward P. K. Tsang