We provide a reconstruction of Blum and Furst’s Graphplan algorithm, and use the reconstruction to extend and improve the original algorithm in several ways. In our reconstruction, the process of growing the planning-graph and inferring mutex relations corresponds to doing forward state-space refinement over disjunctively represented plans. The backward search phase of Graphplan corresponds to solving a binary dynamic constraint satisfaction problem. Our reconstruction sheds light on the sources of strength of Graphplan. We also use the reconstruction to explain how Graphplan can be made goaldirected, how it can be extended to handle actions with conditional effects, and how backward state-space refinement can be generalized to apply to disjunctive plans. Finally, we discuss how the backward search phase of Graphplan can be improved by applying techniques from CSP literature, and by teasing apart planning and scheduling (resource allocation) phases in Graphplan.